Position du problème : les trois lois de Newton
Problème : les trois lois de Newton sont une synthèse de tous les lois de la mécanique établis jusqu’à l’époque de Newton, mais dans l’enseignement on suivi une démarche d’analyse inverse, c’est à dire, on admis les lois, et on les applique sur des cas particuliers.


En plus, du théorème de l’énergie cinétique et du théorème de l’énergie mécanique, les trois lois de Newton : principe d’inertie découvert la première fois par Galileo, le principe d’action et de la réaction, connu aussi par l’appellation principe des actions réciproques, et la deuxième loi de Newton permettent dans une formulation simplifiée d’étudier la plupart des phénomènes mécaniques au niveau du baccalauréat.
Objectifs les trois lois de Newton terminale science
Objectifs : centre d’inertie d’un solide, connaître et appliquer le principe d’inertie, connaître le principe d’action et de la réaction, définir un repere galiléen , définir un repere de Freinet, distinguer cinématique de la dynamique, vecteur vitesse, vecteur accélération, accélération normale, accélération tangentielle, équations horaire, équation de la trajectorie , chute parabolique, déviation électrique, force de Lorentz, déviation magnétique, cyclotron, sélecteur de vitesse, spectrographe de masse
Pour se faire une idée sur les trois lois de Newton , suivez le lien ci-dessous
https://www.superprof.fr/ressources/scolaire/physique-chimie/terminale-s/mecanique/lois-newton.html
La mécanique newtonienne est une branche de la physique. Depuis les travaux d’Albert Einstein, elle est souvent qualifiée de mécanique classique. Wikipédia
Cours et exercices les trois lois de Newton terminale science
Inertie
En physique, l’inertie d’un corps, dans un référentiel galiléen, est sa tendance à conserver sa vitesse : en l’absence d’influence extérieure, tout corps ponctuel perdure dans un mouvement rectiligne uniforme. L’inertie est aussi appelée principe d’inertie, ou loi d’inertie, et, depuis Newton, première loi de Newton. Wikipédia
Principe d’inertie (première loi de Newton)
Tendance d’un corps à maintenir indéfiniment invariable son mouvement. Ce concept trouve une formulation précise dans le « principe d’inertie » ou « première loi de Newton » : un corps ne subissant aucune force (ou un système de forces dont la résultante est nulle) reste immobile, ou a un mouvement rectiligne uniforme.
Principe de la réaction et de la réaction (principe des actions réciproques) (troisième loi de Newton)
Troisième loi énoncée par Issac Newton en 1687 dans le premier volume de son Philosophiae Naturalis Principia Mathematica : tout corps A exerçant une force sur un corps B subit une force d’intensité égale, mais de sens opposé, exercée par le corps B.
principe fondamentale de la dynamique (deuxième loi de Newton)
Le principe fondamental de la dynamique désigne une loi de physique mettant en relation la masse d’un objet, et l’accélération qu’il reçoit si des forces lui sont appliquées. On l’appelle aussi deuxième loi de Newton, ou relation fondamentale de la dynamique, ou encore RFD. Wikipédia
Pour accéder aux cours et exercices , cliquez sur le lien qui est au dessous de l’image

Vidéos les trois lois de Newton
Newton’s laws of motion
Newton’s laws of motion, three statements describing the relations between the forces acting on a body and the motion of the body, first formulated by English physicist and mathematician Isaac Newton, which are the foundation of classical mechanics.
Newton’s first law: the law of inertia
Newton’s first law states that if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force. In fact, in classical Newtonian mechanics, there is no important distinction between rest and uniform motion in a straight line; they may be regarded as the same state of motion seen by different observers, one moving at the same velocity as the particle and the other moving at constant velocity with respect to the particle. This postulate is known as the law of inertia.

The law of inertia was first formulated by Galileo Galilei for horizontal motion on Earth and was later generalized by René Descartes. Although the principle of inertia is the starting point and the fundamental assumption of classical mechanics, it is less than intuitively obvious to the untrained eye. In Aristotelian mechanics and in ordinary experience, objects that are not being pushed tend to come to rest. The law of inertia was deduced by Galileo from his experiments with balls rolling down inclined planes.
For Galileo, the principle of inertia was fundamental to his central scientific task: he had to explain how is it possible that if Earth is really spinning on its axis and orbiting the Sun, we do not sense that motion. The principle of inertia helps to provide the answer: since we are in motion together with Earth and our natural tendency is to retain that motion, Earth appears to us to be at rest. Thus, the principle of inertia, far from being a statement of the obvious, was once a central issue of scientific contention. By the time Newton had sorted out all the details, it was possible to accurately account for
the small deviations from this picture caused by the fact that the motion of Earth’s surface is not uniform motion in a straight line (the effects of rotational motion are discussed below). In the Newtonian formulation, the common observation that bodies that are not pushed tend to come to rest is attributed to the fact that they have unbalanced forces acting on them, such as friction and air resistance.Get a Britannica Premium subscription and gain access to exclusive content.Subscribe Now
Newton’s second law: F = ma

Newton’s second law is a quantitative description of the changes that a force can produce on the motion of a body. It states that the time rate of change of the momentum of a body is equal in both magnitude and direction to the force imposed on it. The momentum of a body is equal to the product of its mass and its velocity. Momentum, like velocity, is a vector quantity, having both magnitude and direction. A force applied to a body can change the magnitude of the momentum or its direction or both. Newton’s second law is one of the most important in all of physics. For a body whose mass m is constant, it can be written in the form F = ma, where F (force) and a (acceleration) are both vector quantities. If a body has a net force acting on it, it is accelerated in accordance with the equation. Conversely, if a body is not accelerated, there is no net force acting on it.
Newton’s third law: the law of action and reaction
Newton’s third law states that when two bodies interact, they apply forces to one another that are equal in magnitude and opposite in direction. The third law is also known as the law of action and reaction. This law is important in analyzing problems of static equilibrium, where all forces are balanced, but it also applies to bodies in uniform or accelerated motion. The forces it describes are real ones, not mere bookkeeping devices. For example, a book resting on a table applies a downward force equal to its weight on the table. According to the third law, the table applies an equal and opposite force to the book. This force occurs because the weight of the book causes the table to deform slightly so that it pushes back on the book like a coiled spring.
Influence of Newton’s laws
Newton’s laws first appeared in his masterpiece, Philosophiae Naturalis Principia Mathematica (1687), commonly known as the Principia. In 1543 Nicolaus Copernicus suggested that the Sun, rather than Earth, might be at the centre of the universe. In the intervening years Galileo, Johannes Kepler, and Descartes laid the foundations of a new science that would both replace the Aristotelian worldview, inherited from the ancient Greeks, and explain the workings of a heliocentric universe. In the Principia Newton created that new science. He developed his three laws in order to explain why the orbits of the planets are ellipses rather than circles, at which he succeeded, but it turned out that he explained much more. The series of events from Copernicus to Newton is known collectively as the Scientific Revolution.
In the 20th century Newton’s laws were replaced by quantum mechanics and relativity as the most fundamental laws of physics. Nevertheless, Newton’s laws continue to give an accurate account of nature, except for very small bodies such as electrons or for bodies moving close to the speed of light. Quantum mechanics and relativity reduce to Newton’s laws for larger bodies or for bodies moving more slowly.The Editors of Encyclopaedia BritannicaThis article was most recently revised and updated by Erik Gregersen, Senior Editor.
Dans les exercices de mécanique, les élèves cite l’application de la deuxième loi de Newton, alors que dans la réalité, ils appliquent le théorème du centre d’inertie, qui est un cas particulier, lorsque la masse du système reste constante
J’aimeJ’aime